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SUMMARY

Systematic interrogation of tumor-infiltrating lym-
phocytes is key to the development of immunother-
apies and the prediction of their clinical responses
in cancers. Here, we perform deep single-cell RNA
sequencing on 5,063 single T cells isolated from pe-
ripheral blood, tumor, and adjacent normal tissues
from six hepatocellular carcinoma patients. The tran-
scriptional profiles of these individual cells, coupled
with assembled T cell receptor (TCR) sequences,
enable us to identify 11 T cell subsets based on their
molecular and functional properties and delineate
their developmental trajectory. Specific subsets
such as exhausted CD8+ T cells and Tregs are prefer-
entially enriched and potentially clonally expanded in
hepatocellular carcinoma (HCC), and we identified
signature genes for each subset. One of the genes,
layilin, is upregulated on activated CD8+ T cells and
Tregs and represses the CD8+ T cell functions
in vitro. This compendium of transcriptome data pro-
vides valuable insights and a rich resource for under-
standing the immune landscape in cancers.

INTRODUCTION

Cancer immunotherapies have dramatically altered the oncolog-

ical treatment landscape over the past decades (Sharma and

Allison, 2015). While such therapies as checkpoint blockade

can lead to remarkable clinical responses (Topalian et al.,

2015), their efficacies are not uniform among cancer patients

or cancer types. It is, therefore, paramount to identify robust bio-

markers that are predictive of therapy responses. Several factors

such as mutational loads, tumor-infiltrating lymphocytes (TILs)

levels, and the expression of drug targets provide certain corre-

lation with patient responses for anti-CTLA4 or anti-PD1 thera-

pies (Topalian et al., 2016), but these are usually not robust
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enough to be uniformly applied as clinical biomarkers. The devel-

opment of novel cancer immunotherapies and the identification

of effective biomarkers require deep understanding of tumor-

resident T cells. Transcriptome analyses of infiltrating regulatory

T cells (or Tregs) from colon, lung, and breast cancers have re-

vealed their highly suppressive nature (De Simone et al., 2016;

Plitas et al., 2016). Although the clinical efficacy of various

checkpoint inhibitors hinges at least in part upon their ability to

unleash the CD8+ cytotoxic T cells in the tumor microenviron-

ment, the cytotoxic activity of these T cells could be rendered

ineffective primarily by the suppression of Tregs (Nishikawa

and Sakaguchi, 2014) or by reaching a T cell dysfunction state

called exhaustion, defined by poor effector function, sustained

expression of inhibitory receptors, and a unique transcriptional

state (Sen et al., 2016; Wherry and Kurachi, 2015). Therefore, a

deep understanding of the mechanisms and pathways leading

to the augmented CD8+ T cell exhaustion and the accumulation

of Tregs in cancer will provide better strategies to orchestrate the

immune system to eradicate cancers.

Single-cell analysis of infiltrating lymphocytes allows detailed

understanding of these cells in the highly complex tumor micro-

environment. Recently, single-cell transcriptome analysis has

been applied to cancerous and immune cells from melanoma

patients revealing T cell exhaustion signature and their connec-

tion to T cell activation (Tirosh et al., 2016). In addition, single-cell

RNA sequencing (RNA-seq) provides a powerful tool to define

T cell receptor (TCR) sequences for each cell, which are pivotal

for recognizing viral antigens (Chisari and Ferrari, 1995) or

tumor-specific neoantigens presented by the major histocom-

patibility complex (MHC) on tumor cells (Coulie et al., 2014).

While the TCR repertoire is enormous due to the large amount

of TCRs and random recombination, identical TCR sequences

can illustrate T cell clonal expansion patterns and T cell lineages

(Han et al., 2014).

Hepatocellular carcinoma (HCC) is one of the leading causes

of cancer-related death worldwide (El-Serag, 2011) and chronic

hepatitis B virus (HBV) infection is the major cause of HCC in

China. Yet, there are limited treatment options and lack of clinical

success in immunotherapies (Prieto et al., 2015). Although HCC
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tumors harbor a significant level of TILs (Kasper et al., 2009),

those TILs are by inference incapable of killing tumor cells.

Thus, HCC tumors provide an appealing model to characterize

the dysregulation of TILs. In this study, the single-cell RNA-seq

analyses of >5,000 single T cells isolated from HCC patients

enabled us to simultaneously study their complete TCR se-

quences and transcriptomes. We identified 11 unique T cell

subsets with distinct tissue distribution patterns. Combined

expression and TCR-based analyses revealed connectivity and

potential developmental path of these subsets. Signature genes

for exhausted CD8+ T cells and tumor-specific Tregs, such as

layilin (LAYN), were examined in detail, and we found that over-

expressing LAYN in primary CD8+ T cells resulted in inhibition of

interferon (IFN)-g production, suggesting a regulatory function of

LAYN. This unprecedentedly large-scale transcriptome data

of T cells can be used as a valuable resource for studying the

basic characteristics of TILs and for potentially guiding effective

immunotherapy strategies.

RESULTS

Tumor Characteristics and Single T Cell Transcriptome
Data Generation
For six treatment-naive HCC patients, we first performed bulk

exome- and RNA-sequencing (RNA-seq) using their tumor sam-

ples to obtain their basic properties (Figure 1A). Copy-number

variation and somatic mutations of these tumors were consistent

with known HCC genomic patterns (Figures S1A and S1B) (Kan

et al., 2013). The presence of infiltrating lymphocytes in tumor

tissues was confirmed using immunohistochemistry (IHC) with

CD3, CD4, CD8, and FOXP3 antibodies (Figure S1C), consistent

with previous reports (Kasper et al., 2009). We further performed

Opal multicolor IHC staining (Figure 1B) to delineate the exis-

tence of different T cell subtypes. Notably, we observed that

the number of CD8+ T cells, but not FOXP3+ regulatory T cells,

was much lower in the core of tumors than in the outer cortex

(Figure S1D), indicating the inefficiency of CD8+ T cell infiltration.

We then sorted CD3+CD4+ and CD3+CD8+ T cells from single-

cell suspension prepared from various tissues (Figures 1A and

S1E). In order to enrich Tregs, we further sorted CD4+ T cells

into CD25� and CD25high populations based on the top 4%

gate of blood CD4+ T cells (Wing et al., 2002). The percentage

of CD4+CD25high T cells within CD4+ T cells isolated from tumor

tissues was much higher than those in normal tissues and pe-

ripheral blood (Figure S1F), suggesting potential enrichment of

Tregs in the tumor microenvironment. CD8+ cytotoxic T cells

from peripheral blood, adjacent normal, and tumor tissues

were denoted as PTC, NTC, and TTC, respectively. The

CD4+CD25� T cells from these three locations were enriched

for T helpers and denoted as PTH, NTH, and TTH, respectively,

and the CD4+CD25high T cells were similarly denoted as PTR,

NTR, and TTR, respectively.

RNA-seq data were obtained for a total of 5,063 sorted individ-

ual cells (Figure 1C), at an average of 1.29 million uniquely map-

ped read pairs per cell (Table S1). A saturation analysis indicated

that at such sequencing depth, we could reliably detect impor-

tant classes of genes, including cytokines and transcription fac-

tors (Figure S2A), and there was no obvious 30 coverage bias for
samples prepared using the Smart-Seq2 method (Picelli et al.,

2014) (Figure S2B). Excluding outlier cells (Figures S2C–S2H),

we revealed distinct patterns of T cell clustering with the most

variable genes (Figure 1D). The clustering of cells from the

same location and cell type suggested that there were different

properties and intrinsic structures for different groups of lympho-

cytes within a given patient (Figures S2I and S2J). In some

cases, cells from different groups were mixed together (e.g., a

subset of TTC cells clustered closely with NTC) indicating their

similar functional properties. Meanwhile, PTC cells fell into two

apparent clusters, consistent with the presence of both naive

and activated CD8+ T cells in blood. In particular, TTH cells ex-

hibited high degree of diversity with a small fraction resembling

TTR cells. This complex intrinsic composition of T cells from

HCC patients highlights the necessity of single-cell technologies

for dissecting tumor-related T cells in detail.

T Cell Clustering and Subtype Analysis
To reveal the intrinsic structure and potential functional subtypes

of the overall T cell populations, we performed unsupervised

clustering of all T cells using the spectral clustering method im-

plemented in SC3 (Kiselev et al., 2017). A total of 11 stable clus-

ters emerged, including 5 clusters for CD8+ and 6 clusters for

CD4+ cells, each with its unique signature genes (Figures 2A–

2C; Table S2). Cells of the first CD8+ cluster, C1_CD8-LEF1,

were dominant in peripheral blood (Figure 2B) and specifically

expressed ‘‘naı̈ve’’ marker genes such as LEF1 and CCR7

(Förster et al., 2008). The second cluster, C2_CD8-CX3CR1,

was characterized by the high expression of the CX3CR1,

FCGR3A, and FGFBP2 genes (Figure 2C), commonly associated

with T cells with effector functions (Böttcher et al., 2015). The

third cluster, C3_CD8-SLC4A10, characterized by specific

expression of SLC4A10, ZBTB16, and RORC (Figures 2C and

S3A), was largely composed of mucosal-associated invariant

T cells (MAIT), which were confirmed by predominantly bearing

semi-invariant TCR alpha chains with TRAV1-2/TRAJ33,

TRAV1-2/TRAJ20, or TRAV1-2/TRAJ12 (Figure S3B) (Kurioka

et al., 2016). The fourth cluster, C4_CD8-LAYN, predominantly

composed of cells from tumor tissues (Figure 2B), expressed

high levels of exhaustion markers CTLA4, PDCD1, and HAVCR2

(Figure 2C), thus representing exhausted CD8+ T cells (Chen and

Flies, 2013). The remaining CD8+ cells, falling into the fifth

cluster, C5_CD8-GZMK, shared a few common genes with clus-

ter 4, such as PDCD1 and DUSP4, albeit also with the GZMK

expression signature that was absent in those exhausted cells

(Figure 2C).

The general distribution patterns of CD8+ T clusters were com-

parable among patients (Figure 2D). Naive T cells with CCR7

expression and effector memory T cells withCX3CR1were prev-

alent in peripheral blood, while MAIT cells were prevalent in non-

tumor adjacent liver tissue. The percentages of exhausted CD8+

T cell were increased significantly in tumor samples (Figure 2E),

in agreement with previous findings (Jiang et al., 2015). Mean-

while, MAIT cell fractions were significantly reduced in HCC tu-

mors, compared with adjacent normal tissues. We confirmed

this finding in the TCGA cohort, as the expression of the MAIT

marker gene SLC4A10 in HCC tumors was significantly lower

(p = 0.003, paired Wilcoxon test) than paired normal samples,
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Figure 1. Dissection and Clustering of Tumor-Infiltrating T Cells in HCC
(A) Overview of the study design.

(B) Opal multicolor IHC staining with anti-CD3, CD4, CD8, and FOXP3 antibodies. Tc, CD8+ T cells; Th, T helper cells; Treg, regulatory T cells.

(C) The HCC patient information and numbers of T cells sequenced. The tissue types P/N/T/J represent T cells isolated from blood, adjacent normal, tumor

tissues, and the joint area between the tumor and adjacent normal tissues.

(D) 2D visualization of single-cell clusters in patient P1116 by t-SNE. Each dot corresponds to one single cell, colored according to cell type and location. PTC,

NTC, TTC: CD8+ T cells from peripheral blood, adjacent normal, and tumor tissues, respectively; PTH, NTH, TTH: CD4+CD25� T cells from these three locations;

PTR, NTR, TTR: CD4+CD25high T cells from the same three locations.

See also Figures S1 and S2 and Table S1.
confirming that theMAIT cell reduction is common in liver cancer

(Figure S3C). In addition, lower SLC4A10 expression in HCC cor-

relates with poor prognosis in the TCGA cohort (p = 0.037, log

rank test; Figure S3D). Thus, our results provide evidence for
1344 Cell 169, 1342–1356, June 15, 2017
the differential distribution of CD8+ T cells as a feature in the tu-

mor microenvironment of HCC.

Similarly, we identified six major CD4+ T cell clusters (Fig-

ure S4A). C6_CD4-CCR7 cells, mostly derived from blood,
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comprised CD4+ T cells with high expression of naive marker

genes, such as SELL, TCF7, and CCR7. Both C7_CD4-FOXP3

and C8_CD4-CTLA4 were FOXP3+ Tregs, but C8_CD4-CTLA4

had higher CTLA4 expression (Figure S4B). While C7_CD4-

FOXP3 mainly comprised of sorted CD4+CD25high cells from pe-

ripheral blood (PTR), C8_CD4-CTLA4 cells were primarily sorted

CD4+CD25high cells from tumors (TTR). Although we used

CD4+CD25high sorting to enrich Tregs, some of the sorted cells

fell into other cell types based on detailed transcriptome analysis

(Figure 2B). Thus, in the subsequent analyses, we only relied on

Tregs that were digitally defined by the Treg signature genes

expression. For example, in the C8_CD4-CTLA4, in addition to

the expression of FOXP3, other well-defined Treg genes such

as TNFRSF9, TIGIT, and CTLA4, were also present (Bhairavab-

hotla et al., 2016). These cells were preferentially enriched in tu-

mors (Figure 2F). Cells from the remaining clusters were primarily

T helper cells from normal and tumor tissues andwere character-

ized by the high expression of GZMA and CCL5. Among

these cells, C10_CD4-CXCL13 specifically expressed CXCL13,

PDCD1, CTLA4, and TIGIT, suggestive of the identity of ex-

hausted CD4 T cells (Crawford et al., 2014). C11_CD4-GNLY ex-

hibited high expression of cytotoxic molecules, including NKG7,

GNLY, and GZMB, indicative of the status of cytotoxic CD4

T cells (Marshall and Swain, 2011).

Identification and Confirmation of Genes Uniquely
Associated with HCC-Infiltrating Tregs and Exhausted
CD8+ T Cells
Our data demonstrated the preferential enrichment of CTLA4high

Tregs and exhausted CD8 cells in HCC (Figures 2E and 2F).

Because co-inhibitory receptors, such as PDCD1 and TIGIT, ex-

pressed by these two T cell subsets are targets for cancer immu-

notherapies, we focused our further analyses on these cell types.

We identified a total of 401 genes (adjusted p value < 0.01, limma

moderated t test, and fold changeR 2) specifically expressed in

tumor-infiltrating Tregs (Table S3), including FOXP3, CTLA4,

TNFRSF18, TNFRSF4, and CCR8. These HCC Treg-specific

genes significantly overlapped with those identified by three pre-

vious studies in melanoma, breast, colon, and lung cancers

(p value < 2e-85, hypergeometric test) (Figure 3A) (De Simone

et al., 2016; Plitas et al., 2016; Tirosh et al., 2016). Among the

33 common Treg signature genes from these 3 studies, 31 genes

were also identified in our data (Figures 3B, 3C, and S4C). Two

missed genes from the shared gene list, CRADD and IL32, also
Figure 2. T Cell Subtype Analysis Based on Single-Cell Gene Expressi

(A) The t-SNE projection of T cells from HBV+ patients, showing the formation of

cluster is determined by the gene expression characteristics of each cluster. Cluste

T cells; C3_CD8-SLC4A10:MAIT cells; C4_CD8-LAYN: exhaustedCD8+ T cells; C

CTLA4: tumor Tregs; C10_CD4-CXCL13: exhausted CD4+ T cells; C11_CD4-GN

(B) Unsupervised hierarchical clustering of the 11 clusters based on the average g

are shown.

(C) Heatmap of five CD8+ T cell clusters with unique signature genes. Informa

specifically expressed genes are marked alongside. Clone type N1/N2/N3/N4 ind

T cells, respectively. NA indicates that no dominant TCR alpha/beta was observ

(D) The fractions of five clusters defined in CD8+ T cells in each patient across p

(E) The percentages of cells in different clusters in adjacent normal and tumor tis

(F) The percentages of tumor Tregs in C8_CD4-CTLA4 cluster in peripheral bloo

See also Figures S3 and S4 and Table S2.
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showed significantly higher expression (adjusted p value < 6e-

12, limma moderated t test) in tumor-specific infiltrating Tregs,

albeit with slightly lower log2FC values (0.99 and 0.96, just under

the cutoff of 1.0). Therefore, our single-cell strategy based on

relatively limited patient samples could robustly provide detailed

portraits of these tumor-infiltrating lymphocytes. Our study also

unveiled 146 genes that uniquely enriched in our dataset (Figures

3D and S4C), including RGS1, STAT3, and PTPN22 that were

previously reported to be associated with Tregs or regulate their

functions (Fousteri et al., 2014; Goode et al., 2013; Pallandre

et al., 2007).

Next, we analyzed tumor-infiltrating exhausted CD8+ T cells

and obtained a list of 82 exhaustion-specific genes by

comparing exhausted and non-exhausted TTC cells (Figure 3E;

Table S4). Multiple known exhaustion markers, such as

HAVCR2, PDCD1, ENTPD1, CTLA4, TIGIT, TNFRSF9, and

CD27, were among the top-ranked genes. When evaluating the

exhaustion status with such exhaustion-specific gene signature,

we found that patients at the late stage (P0322 and P1116) ex-

hibited higher exhaustion level than other patients (p = 0.02, Stu-

dent’s t test) (Figure S5A). The 82-gene list also contained

several less-described genes, such as MYO7A, WARS, and

CXCL13 (Tirosh et al., 2016), as well as novel exhaustion makers

such as LAYN, PHLDA1, and SNAP47 (Figure S5B). Notably, 22

of these exhaustion-related genes were also highly expressed by

tumor-infiltrating Tregs (Figure 3F), including CTLA4 and TIGIT.

Based on the TCGA HCC data, higher expression of PHLDA1

and SNAP47 were both associated with poor prognosis, while

such a trend was not observed for the Treg-associated CCR8

gene (Figure S5C) despite a recent report showing its associa-

tion with poor prognosis in colon and lung cancer (De Simone

et al., 2016). Thus, our data not only confirmed previously iden-

tified genes associated with tumor-infiltrating exhausted CD8+

T cells and Tregs, but also discovered additional markers for

these cell types.

LAYN Is Induced in Blood-Isolated CD8+ T Cells and
Tregs upon Activation
LAYN, encoding layilin, was recently reported to be highly ex-

pressed in Tregs isolated from lung and colon tumors (De

Simone et al., 2016) but it is under-characterized functionally.

Based on our data, LAYN exhibited a highly specific expres-

sion pattern in both tumor Tregs (C8_CD4-CTLA4) and ex-

hausted TTC cells (C4_CD8-LAYN) (Figure 4A). In addition, by
on

11 main clusters shown in different colors. The functional description of each

r C1_CD8-LEF1: naive CD8+ T cells; C2_CD8-CX3CR1: effectormemory CD8+

6_CD4-CCR7: naive CD4+ T cells; C7_CD4-FOXP3: peripheral Tregs; C8_CD4-

LY: cytotoxic CD4 cells.

ene expression of cells in each cluster. The proportions of different cell sources

tion of clonal status and tissue-of-origin are colored for each cell. Selective

icates that the TCR sequence was observed 1/2/3/R4 times across the CD8+

ed in the cell.

eripheral blood, adjacent normal, and tumor tissues.

sues. *p < 0.05, N.S., not significant, Student’s t test.

d, adjacent normal, and tumor tissues. **p < 0.01, Student’s t test.
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Figure 3. Gene Expression Characterization Associated with HCC-Infiltrating Tregs and Exhausted CD8+ T Cells

(A) The Venn graph showing the overlap of tumor Treg genes identified in this study with those from previous studies by De Simone et al. (2016) (p = 2e-85), Plitas

et al. (2016) (p = 6e-129), and Tirosh et al. (2016) (p = 2.1e-141), determined by hypergeometric test.

(B) Volcano plot showing differentially expressed genes in tumor-infiltrating Tregs. Each red dot denotes an individual gene passing our p value and fold difference

thresholds. Only those 31 genes found by all previous three studies are marked with gene names.

(C) Violin plots showing the expression profile of those genes recurrently identified in HCC data and previous studies across peripheral blood Tregs (C7_CD4-

FOXP3), tumor-infiltrating Tregs (C8_CD4-CTLA4), and non-Tregs (other CD4 clusters). The expression is measured as the log2(TPM+1).

(D) The same volcano plot as in (B) but with those unique genes found by this study labeled in green. Those identified only once (blue) and twice (purple) previously

are also marked.

(E) Heatmap showing differentially expressed genes between exhausted and non-exhausted TTCs. The top bar indicates patient origins. The lower bar indicates

the exhaustion states. Selected known T cell exhaustion markers are denoted to the right.

(legend continued on next page)
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interrogating the TCGA HCC survival data with respect to LAYN

expression after normalizing the effect of T cell infiltration levels

by total CD3 expression, we found that higher expression of

LAYN was associated with reduced disease-free survival rate

(p = 0.002, log rank test, Figure 4B). Because LAYN encodes a

cell surface protein, we validated its expression at the protein

level on both CD8+ and Tregs isolated from human peripheral

blood mononuclear cells (PBMCs) by fluorescence-activated

cell sorting (FACS) analysis. At the resting stage, LAYN was

not expressed on CD14+ myeloid cells, B cells, CD4+ T cells,

Tregs, or CD8+ T cells (Figure S5D). However, after T cells

were activated by anti-CD3 and anti-CD28 antibodies for

2 days, we readily detected LAYN presence on >30% Tregs

and CD8+ T cells, although on CD4+ T cells LAYN was only mini-

mally upregulated (Figure 4C). These data were consistent with

the observed upregulation of LAYN mRNA in both tumor-infil-

trating CD8+ and Tregs. Although FOXP3 is themaster transcrip-

tion factor for Treg differentiation and function, in human T cells,

FOXP3 can also be transiently upregulated in conventional CD4+

T cells (Wang et al., 2007). Another transcription factor, Helios,

was recently reported to stabilize FOXP3 expression and the

repressive function of Tregs (Kim et al., 2015). Therefore, we

evaluated LAYN expression in either FOXP3+ or FOXP3+Helios+

Tregs. Notably, LAYN was preferentially upregulated in FOXP3+

Helios+ double-positive Tregs (Figure 4D) suggesting that LAYN

expression was associated with more repressive and sta-

ble Tregs.

Because the association of LAYN with tumor-infiltrating ex-

hausted CD8+ T cells in HCC was not previously reported, we

further characterized its expression and regulation in CD8+

T cells in vitro. The LAYN protein was induced on CD8

T cells 1 day after T cell activation and its presence could still

be detected 6 days after activation (Figure 4E). LAYN could

be detected on both PD-1+ and PD-1� CD8+ T cells under

this in vitro stimulation condition. Notably, LAYN was exclu-

sively induced on LAG-3 negative CD8+ T cells (Figure S5E).

The LAG3+CD8+ T cells have been suggested to represent a

unique subset of exhausted CD8+ T cells (Grosso et al.,

2009). The mutually exclusive expression pattern of LAYN

and LAG3 suggests that LAYN might serve as a marker for a

different subset of CD8+ T cells. To better understand the po-

tential function of LAYN on CD8+ T cells, we used retroviral-

mediated overexpression of LAYN in these cells to mimic the

high expression of LAYN on tumor-infiltrating CD8+ T cells

(Rutz et al., 2011). Increased LAYN expression on CD8+

T cells was observed on day 3 after retroviral infection (Fig-

ure 4F). Interestingly, the LAYN-overexpressed CD8+ T cells

produced significantly less IFN-g than that by control virus-

infected cells (Figure 4G), supporting an inhibitory role of

LAYN in CD8+ T cells. In summary, these data corroborated

with the transcriptome data that LAYN protein could be

induced on both Tregs and CD8 T cells and provided insight

into its potential functions.
(F) Scatterplot showing genes with high expression in tumor Tregs (C8_CD4-CTLA

the relative expression of a given gene between exhausted and non-exhausted t

gene between tumor Tregs and the remaining CD4+ T cells. Each dot represents

See also Figures S4 and S5 and Tables S3 and S4.
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Enrichment of Clonal CD8 T Cells and Tregs in HCC
Revealed by TCR Identification
Because TCRs are often used as unique identifiers of T cell

ancestries (Han et al., 2014), we took advantage of our single-

cell RNA-seq data to track the lineage of each single T cell based

on their full-length TCR a and b sequences assembled by the

TraCeR method (Stubbington et al., 2016) for cells from five

HBV-positive HCC patients. In total, we detected full TCR se-

quences for 94% (3,792/4,032) T cells, with at least one paired

productive TCR a-b chain for subsequent analyses (Table S5).

While most cells expressed unique TCR a and b alleles, non-

unique a and/or b could be detected in a fraction of T cells. After

eliminating non-productive alleles (e.g., out-of-frame transcripts)

or low-abundance TCRs (Figure S6A), we found that 84% (3,174/

3,792) contained unique and productive a chains and 94%

(3,559/3,792) unique and productive b chains (Figure S6B), in

agreement with previous reports (Stubbington et al., 2016).

Therefore, to adequately define T cell clonality, we strictly

defined T cells with at least one pair of identical paired a-b chains

to be one clone from the same ancestry, and the expanded

clones were defined as those whose a and b TCR pairs were

shared by at least three cells in a given cell population. A strong

correlation was observed between the recurring frequency of

various TCR a chains and that of b chains among T cells, sug-

gesting a common ancestral cell of origin (Figure S6C). We

further investigated TCR rearrangements to identify V-D-J usage

preference and found the expected TCR segment usage bias

(Figures S6D and S6E) (Freeman et al., 2009).

The available TCR sequences for each cell provide an oppor-

tunity to study the relationship among different T cells. While

most cells contained unique TCRs, patterns of repeat uses

were observed at varying degrees in different cell types, espe-

cially in tumor-infiltrating CD8+ T cells and Tregs (Figure 5A

and 5B). While only �10% CD8+ T cells harbored clonal TCRs

in blood and normal liver tissues, tumor tissues showed a

much higher percentage at �30% (p < 0.05, Student’s t test)

(Figures 5C and S6F). The number of non-unique TCR clones

in tumor tissueswas 2-fold higher than that in blood and adjacent

normal tissues, or 4- to 5-fold higher when only considering

clonal TCRs (p < 0.01, Student’s t test) (Figure S6G).

Similar patterns were identified in tumor-infiltrating Tregs (Fig-

ure 5B). While PTR cells showed little clonal enrichment, much

more TTR cells were clonally enriched (Figures 5D and S6H),

especially for cluster C8_CD4-CTLA4. By contrast, similar clonal

enrichment of tumor-infiltrating T helper cells were not observed

(Figure 5E), with only patient P0508 showing a high proportion of

clonal TCRs in TTH cells (Figure S6I).

Given the low clonal enrichments of T cells in blood and normal

tissues, it was likely that the clonal accumulation of both Tregs

and CD8 T cells was a result of local T cell proliferation and acti-

vation in the tumor environment, as suggested by previous

studies (Ferradini et al., 1993; Tanchot et al., 2013). However,

we could not formally rule out the possibility that these clonal
4) and/or exhausted tumor CD8+ T cells (C4_CD8-LAYN). The x axis represents

umor CD8+ T cells, and the y axis represents the relative expression of a given

a gene, with color annotation inside.
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T cells were amplified in the peripheral lymph organs and then

migrated into tumors. Because these patients were HBV-posi-

tive, clonal T cells could also be a result of T cell activation in

response to viral antigens during chronic infection. However, in

this case, onewould expect similar clonal enrichment in the adja-

cent HBV+ normal tissues, which was not observed in our study

(Figure 5C). Altogether, our data enabled us to link TCR informa-

tion to various states of T cells and supported the potential clonal

expansion of both CD8+ T cells and Tregs in HCC.

Mapping Subset Connectivity by Pseudotime State
Transition and Clonal TCRs
The complete transcriptome data along with TCR information for

a large number of T cells allowed us to gain insights into the func-

tional states of and relationship among these cells. We applied

the Monocle 2 algorithm (Trapnell et al., 2014) to order CD8+

T cells or CD4+ T helper cells in pseudotime to indicate their

developmental trajectories (Figures 6A and 6B). Such pseudo-

time analysis is a measure of progress through biological pro-

cesses based on transcriptional similarities. We also applied

other algorithms including EMBEDDR (Campbell et al., 2015),

SCORPIUS (Cannoodt et al., 2016), and TSCAN (Ji and Ji,

2016) to the same dataset and obtained comparable results

(Figure S7A).

For CD8+ T cell analysis, we removed those MAIT cells

(C3_CD8-SLC4A10) due to their different TCR characteristics.

Most cells from each cluster aggregated based on expression

similarities, and different clusters formed into a relative process

in pseudotime that began with the C1_CD8-LEF1 cells (naı̈ve

CD8+ T cells), followed by C2_CD8-CX3CR1 (effector memory

CD8+ T cells), C5_CD8-GZMK, and ended with C4_CD8-LAYN

cells (exhausted CD8+ T cells) (Figure 6A). Thus, those ex-

hausted T cells were highly enriched at the late period of the

pseudotime, demonstrating the T cell state transition from acti-

vation to exhaustion.

C5_CD8-GZMK appeared to be an intermediate state be-

tween effector and exhausted T cells based on such trajectory

analysis. This finding was also independently validated by the

clonal analysis based on those identical TCRs from common

ancestors but falling into different cell clusters (Figure 6C). Of

the total of 61 TCR pairs shared by cells from at least two

different clusters, 30 were shared between C2_CD8-CX3CR1

and C5_CD8-GZMK and 20 were shared between C5_CD8-

GZMK and C4_CD8-LAYN. By contrast, no more than five TCR
Figure 4. LAYN Expression Is Induced on Activated Human Treg and C

(A) Violin plots comparing the expression of LAYN in 11 T cell clusters.

(B) The disease-free survival curve based on TCGA HCC data showing patients w

tests, hazard ratio: 1.62 (1.19–2.21, 95% confidence interval [CI]).

(C) Human PBMCs were stimulated in vitro with anti-CD3 and anti-CD28 mono

indicated population (non-Treg CD4 T cells: CD3+CD4+Helios�Foxp3�; Tregs:
determined by FACS. From (C) to (E), data represent mean ± SEM n R 3.

(D) Human PBMCs were similarly stimulated as in (C). Gated on each indicated C

Helios�Foxp3+CD4 T: CD3+CD4+Helios�Foxp3+; Helios+Foxp3+CD4 T: CD3+CD

(E) Human PBMCs were similarly stimulated as in (C) for the indicated time. Gate

(F) Flow cytometry plots showing human LAYN expression on CD8+GFP+ T cells

(G) ELISA of human IFN-g in the cell supernatant of sorted control and LAYN-infec

represent mean ± SEM n R 2.

See also Figure S5.

1350 Cell 169, 1342–1356, June 15, 2017
pairs were shared between other clusters, supporting the devel-

opment connections between the transitional C5_CD8-GZMK

and effector cells or exhausted cells.

Similarly, we analyzed CD4+ T helper cells to determine the dif-

ferentiation trajectory. Based on the pseudotime result (Fig-

ure 6B), the C6_CD4-CCR7 naive T cells and C9_CD4-GZMA T

helper cells primarily aggregated on the pseudotime backbone.

The C10_CD4-CXCL13 (exhausted CD4+ T cells) and C11_CD4-

GNLY (cytotoxic CD4+ T cells) cells were located in different

directions in the pseudotime trajectory plot, indicating functional

divergence of these cells. We again examined shared TCR

sequences among these groups of cells and found that

most shared TCRs occurred between C9_CD4-GZMA and

C10_CD4-CXCL13 or between C9_CD4-GZMA and C11_CD4-

GNLY (Figure 6D). Almost no TCRs were shared between

C10_CD4-CXCL13 and C11_CD4-GNLY indicating their exclu-

sive developmental fate and supporting the conclusion from

the pseudotime analyses. Based on both the trajectory and

TCR analyses, we inferred that exhausted CD4 and CD8

T cells were more closely linked to intermediate populations

marked by GZMA and GZMK signatures, respectively, than to

the effector populations. It remains to be seen if therapeutic stra-

tegies targeting these intermediate populations could prevent

their transition to exhausted cells and instead promote them to

effector cells.

Preferential and Clonal Enrichment of Exhausted CD8+

T Cells and Tregs in HCC Microenvironment
It has been recognized previously that T cells within the tumor

microenvironment are prone to either exhaustion or Treg sup-

pression, thus preventing such CD8 cells from eliciting sufficient

T cell-mediated killing of tumor cells (Wherry and Kurachi,

2015). Focusing our analysis on tumor-infiltrating T cells in

HCC, we observed much fewer effector CD8+ T cells in the tu-

mor environment but more pronounced exhaustion phenotypes

(Figures 2D and 7A). We also noticed a trend of increased ex-

hausted CD8+ T cells in HCC from late stage patients compared

with early stages (p = 0.03, Student’s t test) (Figure 7B). Further-

more, clonal CD8+ T cells were more likely to exhibit the

exhaustion phenotypes, especially among late-stage HCC tu-

mors (Figure 7C), and high clonal population (greater than four

cells per clone) was much more likely to be exhausted than

non-clonal population (p < 0.01, Student’s t test) (Figure 7D)

in HCC.
D8+ T Cells

ith higher expression of LAYN in tumor had poor prognosis. p = 0.002, log rank

clonal antibodies (mAbs) conjugated microbeads for 2 days. Gated on each

CD3+CD4+Helios+Foxp3+; CD8 T cells: CD3+CD8+), LAYN expression was

D4 T cell sub-populations (Helios�Foxp3�CD4 T: CD3+CD4+Helios�Foxp3�;
4+Helios+Foxp3+), the LAYN presence was determined by FACS.

d on CD8 T cells, the LAYN presence was determined by FACS.

.

ted CD8+GFP+ T cells after 24 hr re-stimulation. *p < 0.05, Student’s t test. Data
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Figure 5. T Cell Receptor Distribution and Clonality Analysis

(A) The TCR distribution of CD8+ T cells across different tissues. Unique (n = 1), duplicated (n = 2), and clonal (n R 3) TCRs are labeled with different colors. Pie

charts above each bar illustrate the composition of every individual TCR. NA indicates that no such cell type was analyzed for the given patient.

(B) The same TCR distribution plot as in (A) for Tregs.

(C) The proportions of clonal CD8+ T cells in tumors (T) are higher than peripheral blood (P) and adjacent normal tissues (N). **p < 0.01; *p < 0.05, Student’s t test.

(D) The proportions of clonal Tregs in tumor tissue (T) are higher than peripheral blood (P). *p < 0.05.

(E) Within HCC tumors, the proportions of clonal tumor-infiltrating CD8+ T and Tregs are higher than those of T helpers. **p < 0.01; *p < 0.05.

See also Figure S6 and Table S5.
In addition to exhausted CD8+ T cells, a previous study also

identified CD8+FOXP3+ regulatory T cells in colorectal and pros-

tate cancers (Chaput et al., 2009). The scale of our data allowed

us to examine whether these cells also existed in HCC. Indeed,

there was a small number of exhausted CD8+ T cells expressing

the Treg marker FOXP3. Some of these FOXP3+ cells shared the

same TCRs with other FOXP3�-exhausted CD8+ T cells based

on TCR analysis (Figure 7E), suggesting those FOXP3+ cells

were developmentally connected with typical FOXP3�-ex-
hausted CD8+ T cells. We further confirmed the presence of

these CD8+FOXP3+ regulatory T cells in HCC by multi-color

IHC (Figure 7F). These cells shared special expression properties

resembling both Treg and cytolytic characteristics (Figure 7G)

with expression of Treg hallmarks, such as FOXP3, CTLA4,

TNFRSF18, and TNFRSF9 and cytolytic-related genes PRF1,

GZMA, and NKG7 indicating the presence of both suppressive

and cell-killing characteristics. Thus, HCC microenvironment

promoted the transition of infiltrating CD8+ T cells into exhausted
Cell 169, 1342–1356, June 15, 2017 1351
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Figure 6. The CD8+ and CD4+ T Cell State

Transition Analysis Based on Integrated

Expression and TCR Clonality

(A) The ordering of CD8+ T cells along pseudotime

in a two-dimensional state-space defined by

Monocle2. Cell orders are inferred from the

expression of most dispersed genes across CD8+

T cell populations sans MAIT. Each point corre-

sponds to a single cell, and each color represents

a T cell cluster.

(B) The same pseudotime plot as in (A) for four

clusters of CD4+ T helper cells.

(C) Cell state transition of CD8+ T cell clusters in-

ferred by shared TCRs. The space distribution of

cells is defined by Figure 2A, with only those cells

sharing TCRs across different CD8+ T cell clusters

shown in colors. Each color represents a distinct

TCR clonetype. Lines connecting different clusters

are based on the degree to TCR sharing, with the

thickness of lines representing the number of

shared TCRs. The insert picture shows the

numbers of TCRs shared by two clusters. The two

colors in every bar represent the particular two

clusters sharing TCRs.

(D) Similar to (C), the cell states transition of CD4+

T helper cell clusters inferred by shared TCRs.

See also Figure S7.
state and even the occasional acquirement of the suppressive

function, because these CD8+FOXP3+ T cells were absent in

either blood or adjacent normal tissues.

The manifestation of a large fraction of clonally expanded

Tregs in the HCC microenvironment might represent another

mechanism to suppress the killing mediated by effector CD8+

T cells. By using both pseudotime and TCR-based methods,

we also traced lineage relationship of tumor-infiltrating CD4+

T cells, especially Tregs (Figures 7H and 7I). Although tumor-

infiltrating Tregs, as defined as C8_CD4-CTLA4, shared close

developmental trajectory to exhausted CD4 T cells (C10_CD4-

CXCL13), these two clusters had only a limited number of shared

TCRs (Figure 7I). The vast majority (71/87) of the tumor-specific

Treg clones were exclusive to themselves, suggesting an inde-

pendent developmental path from other tumor-infiltrating

CD4 T helper cells. This was in contrast to tumor-associated ex-

hausted CD8+ T cells that share a higher number of common

TCRs with other clusters of CD8 T cells in tumor (Figure 7J).

The few common T cell clones in both Tregs and exhausted

CD4 T cell clusters indicated the potential conversion from ex-

hausted CD4 T cells to inducible Tregs (Figure 7I and 7K). The

enrichment of many Treg clones suggested that their TCRs

might recognize HCC antigens, and the amplification of these

Treg clones most likely augmented their immune repressive

functions, which further constrained the effector functions of

tumor-infiltrating T cells.
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DISCUSSION

The deep transcriptome data along

with the complete TCR information for

>5,000 individual T cells provided a
comprehensive resource for understanding the multi-dimen-

sional characterization of T cells, especially TILs. The higher

resolution provided by our dataset was exemplified by the iden-

tification of 11 large subsets as well as unique subpopulations

such as CD8+FOXP3+ regulatory-like cells. The high quantity

and quality of single-cell data allowed us to map their develop-

mental trajectory. In addition, the ability to identify clonal TCRs

at single-cell level permitted us not only to confirm their develop-

mental relationships in various clusters, but also to deduce their

activation status in the cancer microenvironment.

The status of T cell infiltration and their characteristics are usu-

ally associated with different prognostic outcomes (Sharma and

Allison, 2015). In our study, we identified CCR8 and LAYN as

HCC-associated Treg marker genes, although LAYN, but not

CCR8, is associated with tumor-infiltrating exhausted CD8+

T cells and poor prognosis. Previous study with small interfering

RNA (siRNA)-mediated knockdown in vitro revealed a regulatory

role of LAYN in Treg function (Bhairavabhotla et al., 2016). We

demonstrated its induction in both CD8+ T cells and Tregs

upon activation. In addition, overexpression of LAYN on CD8+

T cells from human blood resulted in significantly reduced pro-

duction of IFN-g, a key cytokine involved in tumor killing activity,

supporting LAYN as a negative regulator. Further studies are

needed to generate mechanistic insights into the function of

LAYN as well as other genes associated with HCC-infiltrating

CD8+ T cells and Tregs.
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Figure 7. The Tumor-Specific CD8+ T Cell

and Treg Analysis Based on Integrated

Expression and TCR Clonality

(A) The ordering of tumor-derived CD8+ cells

along pseudotime in a two-dimensional state-

space. Each point corresponds to a single cell,

and each color represents a T cell cluster.

(B) The percentages of exhausted and non-

exhausted TTCs in each patient, based on T cell

classification in Figure 2. The purple color marks

patients in stage I, orange in stage II, and blue

stage IVB.

(C) The fractions of exhausted and non-exhausted

cells among clonal TTCs in each patient.

(D) Bar plot showing the percentages of ex-

hausted TTCs in varying TCR-cluster sizes in each

patient. Error bars represent ± SEM.

(E) Among exhausted TTCs, a small number of

cells show high FOXP3 expression. The space

distribution of cells is defined by Figure 2A, with

only those FOXP3+CD8+ T cells and other CD8+

T cells sharing the same TCRs shown in colors.

The inserts show three different groups of cells

with identical TCR clonetypes, with red dots de-

noting FOXP3+CD8+ cells and blue dots denoting

FOXP3�CD8+ cells.

(F) Opal multicolor IHC staining showing the

presence of FOXP3+CD8+ T cells, labeled with

yellow arrow, using CD8 and FOXP3 antibodies.

(G) Expression characteristics and TCR clonal

status of CD8+ FOXP3+/� T cells in patient P0322.

The same color (except gray) in the TCR annota-

tion bar represents the identical TCR clonetypes.

(H) The same pseudotime plot as in (A) for tumor

CD4+ T cells.

(I) The number of shared TCRs between tumor

Tregs (C8_CD4-CTLA4) and the other CD4+ T cell

clusters. The red numbers represent shared

TCRs, the black numbers the unique TCRs de-

tected within each CD4+ T cell cluster, and the

yellow numbers the shared TCRs between NTR

and TTR within cluster C8_CD4-CTLA4.

(J) The number of shared TCRs between ex-

hausted CD8+ T cells (C4_CD8-LAYN) and other

CD8+ T cell clusters in tumor.

(K) Similar to (E), multiple TCRs are shared

between exhausted T helper cells (C10_CD4-

CXCL13) and Tregs (C8_CD4-CTLA4) in tumor.
The preferential accumulation of both Tregs and exhausted

CD8+ T cells in HCCmight be a result of local expansion of these

cells as suggestion by previous studies (Ferradini et al., 1993;

Hindley et al., 2011). A previous TCR b chain-based study sug-

gested that breast cancer-associated Tregs were mainly re-

cruited from periphery, but less likely evolved from conventional

CD4+ T cells in tumor or expansion of Tregs from adjacent

normal tissue into the tumor environment (Plitas et al., 2016).

Our data, based on clonal TCRs, corroborated with this finding

because the majority clonal HCC-infiltrating Tregs (82%) were

unique (Figure 7I) and only a small portion of them shared com-

mon TCRs with CD4+ T helper cells in the tumor or adjacent

normal tissue Tregs.
Similar TCR analysis, however, painted a different picture for

the origins of tumor-infiltrating exhausted CD8+ T cells. Although

exhausted CD8+ T cells represented the largest cluster (42.6%

on average) in tumor-infiltrating CD8+ T cells, the CX3CR1+

effector cells (7.75%) and GZMK-expressing CD8+ T cells

(35.17%) could also be detected. Among all exhausted CD8+

T cell clones identified in tumor, 37% were shared with other

CD8 T cell clusters, especially with C5_CD8-GZMK cluster

(31%), suggesting exhausted CD8 T cells were more likely

evolved from other types of CD8 T cells inside the tumor.

C5_CD8-GZMK cluster appears to be distinct from conven-

tional T cell subtypes. These cells express lower levels of cyto-

toxic markers (GZMB, GNLY, and KLRG1) compared to effector
Cell 169, 1342–1356, June 15, 2017 1353



T cells and also certain levels of exhaustion markers (PDCD1

and TIGIT) and thus could possibly represent cells in a transition

state from effector to exhausted T cells. Indeed, these cells also

shared high percentage of common TCRs with CX3CR1+

effector T cells (18%). Therefore, promoting cells in C5_CD8-

GZMK cluster to effector-like cells and preventing them from

exhaustionmight be a possible therapeutic strategy. In fact, anti-

body blockade of PD1 pathway has been shown to reinvigorate

exhausted CD8+ T cells with intermediate expression of PDCD1,

but not those with high PDCD1 expression (Blackburn et al.,

2008). In addition toCX3CR1+ CD8 effector T cells, we also iden-

tified GNLY+ CD4 effector T cells, which shared similar gene

expression characteristics to CD8 effector T cells, implicating

their cytotoxic functions. These cells are more closely linked to

CD4+ Cluster 9 with GZMA expression, which appear to be in

a mixed state among known subtypes of T helper cells but are

more similar to the Th1 cells due to the expression of CXCR6,

TBX21, and CXCR3 (Di Cesare et al., 2009). Therefore, promot-

ing these cells to more closely resemble cytolytic CD4+ T cells

(Soghoian and Streeck, 2010) might be another strategy for

cancer immunotherapy.

Another cluster of special interest in HCC consists of the MAIT

cells with specific semi-invariant TCR alpha chains. MAIT cells

are activated during bacterial or viral infection (van Wilgenburg

et al., 2016) but have not been linked to HBV infection previously.

MAIT cells are considered as first line of defense in liver, whereas

their role in cancers is unclear (Kurioka et al., 2016).We observed

markedly decreased representation of MAIT cells in tumors

compared to adjacent normal liver tissues, consistent with

the previous notion that MAIT had the potential to kill cancer

cells, and TCGA HCC patients with low expression of the MAIT

marker gene SLC4A10 showed poor prognosis. These findings

invite further investigations on role of MAIT cells in HCC and

immunotherapies.

In conclusion, our comprehensive single T cell database re-

vealed detailed characteristics of HCC-infiltrating T cells, in

term of their clustering, dynamic, and developmental trajectory,

as well as unique signatures. To facilitate the usage of our data

for the wide research community, we also developed an interac-

tive, web-based tool (http://hcc.cancer-pku.cn) for analyzing,

visualizing, and downloading our single-cell data for single or

multiple user-input genes (Figure S7B). The transcriptome

data, coupled with detailed TCR-based lineage information,

can serve as a rich resource for deeper understanding of

tumor-infiltrating lymphocytes in general.
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Böttcher, J.P., Beyer, M., Meissner, F., Abdullah, Z., Sander, J., Höchst, B.,
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-Human CD3 eFluor 450 (FACS) eBioscience Cat#48-0037-41

Anti-Human CD4 FITC (FACS) eBioscience Cat#11-0048-41

Anti-Human CD8a APC (FACS) eBioscience Cat#17-0086-41

Anti-Human CD25 PE (FACS) eBioscience Cat#12-0259-42

Human Layilin Antibody (FACS) Sino Biological Cat#10208-MM02

7-AAD Viability Staining Solution (FACS) eBioscience Cat#00-6993-50

Anti-CD3 antibody (IHC) Abcam Cat#ab16669

Anti-CD4 antibody (IHC) Abcam Cat#ab846

Anti-CD8 antibody (IHC) Abcam Cat#ab17147

Anti-FOXP3 antibody (IHC) Abcam Cat#ab22510

CD3 Functional Grade Monoclonal Antibody eBioscience Cat#16-0037-85

CD28 Functional Grade Monoclonal Antibody eBioscience Cat#16-0289-85

Biological Samples

Human PBMC AllCells https://www.allcells.com

Critical Commercial Assays

Live/Dead Fixable Blue Dead Cell Stain Kit Invitrogen Cat#L34962

Alexa Fluor 647 Conjugation Kit Molecular Probes Cat#A20186

IFN Gamma Human Uncoated ELISA Kit eBioscience Cat#88-7316-88

Dynabeads Human T-activator CD3/CD28 for T Cell

Expansion and Activation

ThermoFisher Scientific Cat#11131D

Retro-X Universal Packaging System Clontech Cat#631530

Pan T cell Isolation Kit Miltenyi Biotec Cat#130-096-535

Human T cell Activation/Expansion Kit Miltenyi Biotec Cat#130-091-441

NEBNext Ultra RNA Library Prep Kit for Illumina Paired-end

Multiplexed Sequencing Library

NEB Cat#E7530

SureSelectXT Target Enrichment System for Illumina

Paired-End Multiplexed Sequencing Library kit

Agilent Cat#G9701

TruePrep DNA Library Prep Kit V2 for Illumina Vazyme Biotech Cat#TD503

Hiseq 3000/4000 SBS kit Illumina Cat#FC-410-1003

Hiseq 3000/4000 PE cluster kit Illumina Cat#PE-410-1001

Deposited Data

Data files for single-cell RNA sequencing (raw data) This paper EGAS00001002072

Data files for bulk RNA sequencing (raw data) This paper EGAS00001002072

Data files for bulk exome sequencing (raw data) This paper EGAS00001002072

Data files for single-cell RNA sequencing (processed data) This paper GSE98638

Oligonucleotides

Primer: CD3D Forward: TCATTGCCACTCTGCTCC This paper N/A

Primer: CD3D Reverse: GTTCACTTGTTCCGAGCC This paper N/A

Software and Algorithms

SC3 Kiselev et al., 2017 https://github.com/hemberg-lab/SC3

Monocle 2.0 Trapnell et al., 2014 http://monocle-bio.sourceforge.net/

ScLVM Buettner et al., 2015 https://github.com/PMBio/scLVM

TraCeR Stubbington et al., 2016 https://github.com/teichlab/tracer
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact Zemin

Zhang (zemin@pku.edu.cn).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Specimens
Four male and two female patients who were pathologically diagnosed with hepatocellular carcinoma (HCC) were enrolled in this

study. Their ages ranged from 26 to 64, with a median age of 49. Among those patients, three were diagnosed as stage I, one as

stage II, and two as stage IVB. All patients, with the exception of P1202, were HBV-positive based on the HBsAg test. None of

the patients was treated with chemotherapy or radiation prior to tumor resection. The available clinical characteristics of these pa-

tients are summarized in Figure 1C. For patients P0508, P1116, P0322 and P0407, their peripheral blood and paired fresh HCC tumor

and adjacent normal liver tissues were obtained for the subsequent lymphocyte isolation. The adjacent normal tissues were at least

2 cm from thematched tumor tissue. For patients P1202 andP0205, only fresh liver tumor tissues andmatched peripheral bloodwere

collected. For patient P0508, we also collected cells from the joint area between the tumor and the adjacent normal tissue. This study

was approved by the Ethics Committee of Beijing Shijitan Hospital, Capital Medical University. All patients in this study provided writ-

ten informed consent for sample collection and data analyses. For the LAYN study, frozen human PBMCswere obtained fromAllCells

Inc (Alameda, CA). PBMCs fromonly normal healthy donors (i.e.BMI score < 30, no virus infections includingHIV/HCV/HBV, nomedi-

cation within 2 wks and non-smokers) were used in this study.

METHOD DETAILS

Single cell collection
Peripheral bloodmononuclear cells (PBMCs) were isolated usingHISTOPAQUE-1077 (Sigma-Aldrich) solution according to theman-

ufacturer’s instructions. Briefly, 3 mL of fresh peripheral blood was collected prior to surgery in EDTA anticoagulant tubes and sub-

sequently layered onto HISTOPAQUE-1077. After centrifugation, lymphocyte cells remained at the plasma-HISTOPAQUE-1077

interface and were carefully transferred to a new tube and washed twice with 1x PBS (Invitrogen). These lymphocytes were re-sus-

pended with sorting buffer (PBS supplemented with 1% fetal bovine serum (FBS, Sciencell)).

Fresh tumor and adjacent normal tissue samples were cut into approximately 1-mm3 pieces and gently triturated with a 20 mL

syringe plunger on a 40 mm Cell-Strainer (BD) in the RPMI-1640 medium (Invitrogen) with 10% FBS until uniform cell suspensions

were obtained. The suspended cells were subsequently passed through cell strainers and centrifuged at 400 g for 10 min. After

the supernatant was removed, the pelleted cells were suspended in red blood cell lysis buffer (Solarbio) and incubated on ice for

2 min to lyse red blood cells. After washing twice with 1x PBS, the cell pellets were re-suspended in sorting buffer.

Single cell sorting, RT and amplification
Based on FACS analysis, single cells of different subtypes, including CD8+ T cells (CD3+ and CD8+), T helper cells (CD3+, CD4+ and

CD25-), and regulatory T cells (CD3+, CD4+ and CD25high), were sorted into wells of 96-well plates (Axygen) with lysis buffer, which

contained 1 ml 10 mM dNTP mix (Fermentas), 1 ml 10 mM Oligo dT primer, 1.9 ml 1% Triton X-100 (Sigma) plus 0.1 ml 40 U/ml RNase

Inhibitor (Takara). The sealed plates were stored frozen at �80�C. For patients P0322 and P0407, the External RNA Controls Con-

sortium (ERCC, Ambion) was added into eachwell as a known quantity of exogenous spike-in before the reverse transcription. Single

cell transcriptome amplifications were performed following the Smart-Seq2 protocol. The amplified cDNA products were purified

with 1x Agencourt XP DNA beads (Beckman). Following the first round of beads purification, the cDNA of each single cell was quan-

tified with qPCR of CD3D, and fragment analysis (using fragment analyzer AATI).

For those single cell samples with high quality after this step, the DNA products were further cleaned with 0.5x Agencourt XP DNA

beads (Beckman) to eliminate short fragments (less than 500 bp). At this step, the concentration of each sample was quantified with

Qubit HsDNA kits (Invitrogen), and libraries were then constructed with the TruePrep DNA Library Prep Kit V2 for Illumina (Vazyme

Biotech). Constructed libraries derived from patients P0205, P0508 and P0322 were analyzed by an Illumina HiSeq2500 sequencer

with 100 bp pair-end reads, and for patients P0407 and P1116, libraries were analyzed by an Illumina Hiseq 4000 sequencer with

150 bp pair-end reads. For patient P1202, single cells were manually picked into each well with mouth pipet and the single cell tran-

scriptome amplifications were performed following the Tang2010 protocol (Tang et al., 2010). TCRs of those cells could not be

assembled with their single cell RNA-seq data due to the obvious 30 bias and bulk exome and RNA sequencing were not performed

further for this patient.

Bulk DNA and RNA isolation and sequencing
Genomic DNA of peripheral blood and tissue samples were extracted using the QIAamp DNA Mini Kit (QIAGEN) according to the

manufacturer’s specification. The concentrations of DNA were quantified using the Qubit HsDNA Kits (Invitrogen) and the qualities

of DNA were evaluated with agarose gel electrophoresis. Exon libraries were constructed using the SureSelectXT Target Enrichment
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System for Illumina Paired-End Multiplexed Sequencing Library kit (Agilent). Samples were sequenced on the Illumina Hiseq 4000

sequencer with 150 bp paired-end reads.

For bulk RNA analysis, small fragments of tumor tissues and adjacent normal tissues were first stored in RNAlater RNA stabilization

reagent (QIAGEN) after surgical resection and kept on ice to avoid RNA degradation. RNA of tumor and adjacent normal tissue sam-

ples were extracted using the RNeasy Mini Kit (QIAGEN) according to the manufacturer’s specification. The concentrations of RNA

were quantified using the NanoDrop instrument (Thermo) and the qualities of RNA were evaluated with fragment analyzer (AATI).

Libraries were constructed using NEBNext Poly(A) mRNA Magnetic Isolation Module kit (NEB) and NEBNext Ultra RNA Library

Prep Kit for Illumina Paired-end Multiplexed Sequencing Library (NEB). Samples were sequenced on the Illumina Hiseq 4000

sequencer with 150 bp paired-end reads.

Immunohistochemistry
Human tissue specimens were provided by Beijing Shijitan Hospital under an approved Institutional Review Board protocol. The

specimens were collected within 30 min after the tumor resection and fixed in formalin for 48 hr. Dehydration and embedding in

paraffin was performed following routine methods. These paraffin blocks were cut into 5 mm slides and adhered on the slides glass.

Then the paraffin sections were placed in the 70�Cparaffin oven for 1 hr before deparaffinized in xylene and then rehydrated in 100%,

90%, 70% alcohol successively. Antigen was retrieved by citric acid buffer (pH 6.0) in the 95�C water bath for 20 min. Endogenous

peroxidase was inactivated by incubation in 3% H2O2 for 15 min. Following a preincubation with 10% normal goat serum to block

nonspecific sites for 30 min, the sections were incubated with primary antibodies in a humidified chamber at 4�C overnight. (Rabbit

anti-CD3 antibody were diluted with PBS at 1:50, and rabbit anti-CD4 antibody at 1:150, mouse anti-CD8 antibody at 1:50, mouse

anti-FOXP3 antibody at 1:50, Abcam) After the sections were washed with PBS twice for 5 min, the antigenic binding sites were visu-

alized using the GTVisionTMIIDetection System/Mo&Rb according to the manufacturer’s protocol.

In vitro T cell activation and FACS analysis
Human PBMCs were cultured in complete media X-vivo (Lonza) supplemented with 10% human serum (Sigma), Glutamax, non-

essential amino acid and pen/strep in the presence of anti-human CD3 and CD28 mAbs conjugated microbeads. At the indicated

time points post-stimulation, cells were harvested and stained with indicated mAbs (anti-human CD3 (SK7, BD), CD4 (SK3, BD),

CD8a (SK1, BD), CD20 (2H7, BioLegend), CD14 (M5E2, BD), Helios (22F6, BioLegend), Foxp3 (206D, BioLegend), PD-1 (EH12.1,

BD), TIM-3 (F38-2E2, BioLegend), LAG-3 (3DS223H, eBioscience)). Samples were acquired with LSR-II analyzer. Using the Flowjo

software, LAYN and T cell activation/exhaustion markers (i.e. PD-1 and LAG-3) surface expressions were analyzed within each live/

singlet gated sub-population. All data are from at least three independent experiments with more than 6 different donor PBMCs.

Overexpressing LAYN in primary CD8+ T cells
Human layilin was cloned into MSCV-IRES-EGFP retroviral vector (RV-Vec). Retrovirus was generated by using pAmpho packaging

system before infecting T cells. For T cell infection, pan T cells were isolated from human PBMCs by using human Pan T cell isolation

kit and activated with Dynabeads Human T-Activator CD3/CD28 at 1:1 ratio for 72 hr. 72 hr later, Dynabeads were removed and

activated T cells were spin-infected with retrovirus at 2000 rpm for 1 hr under 32�C. 3 days post spin-infection, GFP+ human layilin

overexpressing CD8+ T cells were FACS sorted and rested with human IL2 for 2 days. Equal numbers of control or human layilin over-

expressing CD8 T cells were seeded into 96 round-bottom wells and re-stimulated with plate-bound anti-CD3 (1 mg/ml) and anti-

CD28 (1 mg/ml). Cell supernatant was collected 24 hr after re-stimulation and human IFN-g was measured by ELISA.

QUANTIFICATION AND STATISTICAL ANALYSIS

Single-cell RNA-Seq data processing
Sequencing data from Illumina Hiseq2500 or Hiseq4000 sequencer were first processed to filter out low quality reads which were

defined as: 1) ‘‘N’’ bases account for 10% reads’ length; 2) bases with quality < 5 account for 50% reads’ length; 3) contain adaptor

sequence. The reads passing the above filters usually accounted for about 90% of original reads. These reads were then aligned to

ribosomal RNA sequences download from RFam using the GSNAP alignment tool. Next the unmapped reads were mapped with

GSNAP to reference sequences, containing human genome reference sequence version 19 (hg19) downloaded from UCSC and

92 ERCC spike-in RNA sequences obtained from the datasheet of the External RNA Controls Consortium kit. In addition, a gene

model file named knownGene.txt was downloaded from UCSC and used to define known exon-exon junctions with the adjustable

parameters ‘‘–novelsplicing 1 -n 10 -i 1 -M 2’’ except other default parameters. After retrieving reads overlapping with genes defined

in the gene model file with R function findOverlaps, the read counts of each gene were obtained. We further normalized the read

counts with the DESeq method. Basically, the geometric mean of read counts across all cells was first calculated from the same

patient for each gene, and then the ratios between read count and the corresponding geometric mean across cells with no-zero

read counts were derived. Finally, the median value of the ratios was obtained as the size factor for each cell. Next the normalized

read counts (RCnormalized) was defined as RC/size_factor, and the value log2(RCnormalized+1) was used for downstream analyses such

as PCA and clustering.
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We also filtered out low-quality cells following these steps: 1) to discard cells with the number of uniquely mapped read pairs less

than 250,000; 2) to discard cells with RPKM of CD3D less than 1.0; 3) to discard FACS sorted CD8+ T cells with RPKM of CD8A less

than 1.0 or with RPKM of CD4 larger than 10; 4) to discard FACS sorted CD4+ T cells with RPKM of CD4 less than 1.0 or with RPKM

of CD8A larger than 10; 5) to discard cells that failed the outlier analysis. In the outlier analysis, we performed PCA analysis with

log2(RCnormalized+1) values and fitting analysis between the squared coefficient of variance (CV2) and the mean of RCnormalized among

each FACS-sorted T cell subtype, and then we manually examined the result to identify outlier cells. Outlier cells typically were

located far from other cells and had unusually high contribution to principal components. In addition, those cells also exhibited

low size factor, indicative of low cellular RNA amount, and fitted curves would improve upon removing these cells. After these filtering

and discarding outlier cells, total 4128 cells from 6 patients were remained, including 4070 cells from 5 HBV positive patients.

Bulk RNA- and exome-seq data processing
The Bulk RNA-seq data were processed using the same GSNAP pipeline as single cell RNA-seq data. For bulk exome sequencing

data, we first filtered out low-quality sequencing reads with the same procedure as bulk RNA-seq data processing. The high quality

reads were mapped to the human reference sequence (version b37 with decoy sequence added, download from Broad) with bwa-

0.7.12. The post-alignment processing, including bam file sorting, duplicate readsmarking, reads’ local re-aligning around candidate

INDEL and base quality re-calibration, was performed using GATK according the suggested best practice. Somatic mutations,

including SNV and INDEL, were called using Strelka with default parameters. Those called mutations, especially low-frequency mu-

tations, were manually inspected further using the IGV tool. Somatic copy number alterations and LOH (loss of heterogeneity) were

obtained by ADTex. Based on the overlap with the driver gene list proposed previous, we further obtained candidate driver mutations

for these patients. Among these, a few occurred at known mutational hotspots: TP53 G245C (patient P0205), PIK3CA H1047R

(patient P0508), PTEN C136R (patient P1116), TP53 R249S (patient P0322) and TP53 I195F (patient P0427). The late stage patient

P0322 had two different TP53 mutations.

TCR analysis
The TCR sequences for each single T cell were assembled by the TraCeRmethod from single cell RNA-Seq data, leading to the iden-

tification of the CDR3 sequence, the rearranged TCR genes, and their expression abundance (transcripts per million, TPM). First, we

discard those cells with no obvious TCR forms. Then we arrange TCR alpha and beta chain respectively with the following steps. The

first TCR alpha (beta) chain was defined as follows: 1) keep all single T cells in which only one productive TCR alpha and beta chain

was present. 2) if more than one TCR alpha or beta chain were identified in one T cell, we kept only the cells in which a dominant form

of alpha and beta was detected. Often, one alpha/beta chain was productive and the other chain was non-productive, or the expres-

sion level of one was far higher than the alternative allele, and the productive or dominant formwas identified. Next, we filtered out the

second TCR alpha chains with TPM less than 10 and beta chains with TPM less than 15 to eliminate the biological and bioinformatics

error based on the histogram analysis for the expression distribution (Figure S6A). From a total 4032 cells with successfully assem-

bled TCR sequences, we identified the TCR alpha/beta pairs for 3792 cells.

Unsupervised clustering
For each patient, the relative expression measurement of a given gene was calculated as Y-mean(Y), where Y is the normalized

expression measurement log2(RCnormalized+1), and mean(Y) is the mean of Y across all cells of one patient. This procedure removed

the unwanted variation caused by patient differences. Such centered data were subsequently combined across all patients. Genes

with the top n highest standard deviation were considered highly variable genes, and we experimented different n values of 1500,

2000, 2500 and 3000. The resulting centered expression data across all genes were used for a modified SC3 (Kiselev et al., 2017)

clustering pipeline. Basically, the distance matrixes based on Spearman correlation were first constructed and then transformed

by calculating the eigenvectors of the graph Laplacian. Next, the k-means algorithm was applied to the first d eigenvectors multiple

times where d was chosen different values range from 4% to 7% of the total number of cells. A consensus matrix could be subse-

quently obtained by averaging the results from different runs. The consensus matrix indicate how often two cells are clustered

together into the same group in different runs. Finally, hierarchical clustering with complete agglomeration was performed on the

consensus matrix and the k clusters were inferred. The SC30s parameters k, which was used in the k-means and hierarchical clus-

tering, was chosen from 2 to 10 iteratively. For each SC3 run, the silhouette was calculated, the consensusmatrix plotted, and cluster

specific genes identified. All these three aspects aid us to empirically determine the optimal k and n. Once the stable clusters were

determined, the above procedure was iteratively applied to each of these clusters to reveal highly variable genes among cells in each

cluster, and then use these variable genes to identify sub-clusters.

After clustering results were obtained, to identify differential expressed genes ANOVAwas performed using the R function aov, and

the difference between each cluster pair was tested using Tukey’s range test implemented in R function TukeyHSD. Then differential

expressed genes of each cluster were identified as those met these criteria: 1) FDR adjusted p value of F test < 0.01; 2) absolute log2

fold change between the cluster under consideration and others were larger than 1; 3) p values of the Tukey’s range test comparing

the cluster under consideration and others < 0.01. t-SNE method was used for visualization of cells’ distance in the reduced

2D space.
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In addition, cell cycle was considered as one important confounding factor of cell population analysis. In our study we examined

the contribution of cell cycle by ScLVM (Buettner et al., 2015) and found only minimal effect on our clustering results. The ScLVM

results revealed that the variance explained by cell cycle factor was only 4.5�13.6% of that by biological factors for 4 patients

(P0508, P0322, P0407, P1116), and was 37.7% for patient P0205, which was still much lower than those reported previously

(85%). Indeed, we identified clusters consisting of a few cells expressing cell cycle related genes, such as TUBB4B, TUBA1B,

MCM7, STMN1 and MKI67, but all these clusters (containing 62 cells) were small sub-clusters of the major clusters ‘‘C4_CD8-

LAYN,’’ ‘‘C8_CD4-CTLA4’’ and ‘‘C10_CD4-CXCL13,’’ and excluded for tSNE visualization and differential gene expression analysis.

T cell exhaustion state analysis
To reveal characteristics of exhausted T cells, we first removed tumor infiltrating T cells that carried the same TCR sequences

observed in T cells from non-cancer tissues. MAIT cells were also excluded from the exhaustion analysis due to their special char-

acteristics. Based on the SC3 cluster analysis, tumor-infiltrating CD8+ T cells in C4_CD8-LAYN cluster were defined as exhausted

T cells, while others as non-exhausted T cells. Differentially expressed genes (DEGs) between exhausted and non-exhausted

T cells were detected using the linear model and the empirical Bayes method implemented by the R package limma, with stringent

significance thresholds for adjusted p value (Benjamini-Hochberg multiple testing correction) < 0.01 and fold changeR 4. The strin-

gent threshold was designed to reduce false positives and find reliable exhaustion markers. We used the limma method because it

leverages the highly parallel nature of genomic data, borrowing information between the gene-wise models. The relative expression

(log2 fold-change) of each DEGwithin each patient was calculated and the mean of log2 fold change of all DEG for each patient were

calculated to give the per-patient exhaustion score. The exhaustion score trendedwith the clinical stages. Tumor Treg-specific genes

were also detected with the same method but different threshold (adjusted p value < 0.01 and fold change R 2).

TCGA data analysis
The TCGAdatawere used to test the correlation between selected genes and patient survival. RNaseq v2mRNAexpression data and

clinical parameters were retrieved from cBioportal. To correct the effect of T cell levels within each sample, the expression of selected

genes in tumor were divided by that of the geometric mean of CD3 genes (CD3D, CD3E and CD3G). The relative expression was

further discretized as follow: the median of relative expression minus (plus) 10%MAD (median absolute deviation) defined the lower

(upper) threshold; and samples with relative expression below the lower threshold were categorized as the ‘‘low expression’’ group,

and those with relative expression above the upper threshold were categorized as the ‘‘high expression’’ group. Cases with the rela-

tive expression between the two thresholds were excluded from survival analyses. The statistical analysis was performed by the

R package ‘‘survival,’’ and survival curves were fitted by the survfit function and the difference between high and low expression

group was test by survdiff.

DATA AND SOFTWARE AVAILABILITY

Data resources
HCC sequencing data

The accession numbers for the sequencing raw data and processed data in this paper are EGA: EGAS00001002072 and GEO:

GSE98638. Analysis of such HCC data can also be found at http://hcc.cancer-pku.cn.
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Figure S1. Characteristics of HCC Samples Used and the Presence of Multiple Types of Tumor-Infiltrating T Cells, Related to Figure 1

(A) DNA copy number profiles of a representative HCC tumor. The copy number information was obtained by ADTex and depicted in bin count plots across

chromosomes. The read count ratios (Ratio, ‘‘1’’ in y axis means baseline copy number) and B allele frequencies (BAF) were shown. Various colored dots in the

Ratio graph represents different copy number status of each segments. The red dots in BAF graph represents region of loss-of heterozygosity (LOH), the green

dots heterozygosity (HET), and the blue dots allele-specific copy number alterations (ASCNA).

(B) Selected cancer associated somatic mutations detected in HCC tumors. The mutation annotations refer to COSMIC database version 70, and Gene An-

notations refer to the classification scheme used by Vogelstein B et al. Science 2013 339(6127):1548-58.

(C) Immunohistochemistry images of tumor infiltrating T cells that express CD3, CD4, CD8 and FOXP3 in all five patients.

(D) Opal multicolor IHC staining images (left panel), with grids showing the distribution of CD8+ T cells (middle panel) and FOXP3+ T cells (right panel). Each grid

represents one corresponding site in the left original picture, and the color of the grid represents the cell density.

(E) CD8+ T cells, T helpers and CD4+CD25high T cells were sorted using flow cytometry according to their cell-surface markers. Antibodies for CD3, CD4, CD8,

CD25 and 7AAD dye were used to enrich living target cells.

(F) Representative flow cytometric analysis of lymphocytes from tumor tissue (Tumor), normal tissue (Normal) and peripheral blood (Blood). Scatterplots indi-

cating the frequency of Tregs among all CD4+ T cells in different tissues respectively. Error bars represent ± SEM; *p < 0.05, Student’s t test.
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Figure S2. Coverage Assessment and Detection for Outlier Samples of Single-Cell RNA-Seq Data, Related to Figure 1

For outlier detection (C-H), PCA was performed on each type of cells from every patient to exclude abnormal cell data. The PCA analysis of all NTCs in patient

P1116 is shown here as a representative.

(A) Saturation curves for the number of genes detected at different expression levels. Each point on the curve is derived from calculations based on the random

selection of a fraction of raw reads from each sample, representing the average of 100 replicate sub-samplings. Standard error bars are depicted. Each line with

different color shows how fast a gene can reach detection saturation at different expression levels, represented by a particular RPKM value. For genes with

RPKM > 1, 0.5 M reads are sufficient for detecting the vast majority of such genes. When including genes with lower expression levels (RPKM > 0.1), it takes

1.3 million reads before reaching saturation, which is particularly true for genes with lower expression levels, such as cytokines and transcription factor genes.

(B) While data based on the Tang et al. (2010) instructions show a 30 bias, data based on Smart-Seq2 (Picelli et al., 2014) are more evenly distributed throughout

the gene body and thus are more suitable for full-length gene assembly.

(C) Three highlighted cells are potential outliers and far away from themajority of NTC cells in P1116. The size factor of one PC1 outlier (NTC146-1116) is unusually

small, compared with the others (D), but the apparent contribution is large (E).

(F) The PC2 variance from cell 2 and 3 is primarily due to genes involved in the cell cycle; thus, these two cells are retained.

(G) The inclusion of the PC1 outliers would lead to aberrant squared coefficient of variation, based on expression fitting.

(H) The removal of PC1 outliers makes the fitting curve normal. For (G) and (H), each dot shows one gene, and the x axis shows the average expression levels

across all cells in a population. The y axis shows the squared coefficient of variation. Green dots are genes used for fitting, and the blue line indicates the fitted

relationship between technical noise and gene expression strength.

(I) 2D visualization of single-cell clusters using the t-SNEmethod in patient P0508. Each dot corresponds to one single cell and is colored according to its type and

location. The cell type description is provided in Figure 1.

(J) 2D visualization of single-cell clusters using the t-SNE method in patients P0407, P0205 and P0322. CD4+ and CD8+ T cells were projected separately.
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Figure S3. Highly Expressed Genes in CD8 Cells, TCR V/J Gene Usage and Association of SLC4A10 Expression Pattern with HCC Prognosis

in the C3_CD8-SLC4A10 Cluster, Related to Figure 2

(A) The color of each violin represents the average expression value of a given gene in every one of the six cell clusters (four CD8+ T clusters and C3_CD8-

SLC4A10 cells further divided into non-tissue origin (C3_CD8-SLC4A10-P) and tissue origin (C3_CD8-SLC4A10-N/T)). Cells with SLC4A10 expression showed

high level of geneCD3 andCD8 but with low level expression of NK cell marker genes FCGR3A (CD16),NCAM1 (CD56) andNCR1 (NKP46), confirming their T cell

identity but not NK cells. They also express high level of ZBTB16, RORC, KLRB1 (CD161), IL18R1, CCR2 and CCR6, consisting with gene expression profile of

mucosal-associated invariant T (MAIT) cells. The expression is measured as the log2(TPM+1).

(B) The bar graphs show gene expression of TCR alpha and beta chains distribution in CD8+ SLC4A10 cells and other cells. The dashed lines represent the mean

frequency without any bias in TCR allele expression, and the stars denote transcripts of certain TCR alleles that occur more frequently than the dashed line

frequency. Only the top 25 genes with the highest frequency are shown in each panel.

(C) HCC tumor samples from the TCGA cohort showed significantly (p = 0.003, Paired Wilcoxon Test) lower SLC4A10 relative expression compared with paired

normal samples in the 50 TCGA cases.

(D) The TCGA HCC patients with lower SLC4A10 relative expression in tumor had significantly (p = 0.037, Log-Rank Test) lower disease free survival. The hazard

ratio was 1.39 (1.02 - 1.91, 95% CI).



Figure S4. Clustering of CD4+ T Cells and Distribution of Selective Functional-Related Genes Expression, Related to Figures 2 and 3

(A) Heatmap of CD4+ T cells, with 6 main clusters identified, each containing a unique set of signature genes. Information regarding clonal status, tissue-of-origin

and cell classification are also colored for each cell. Selective functional-related genes are marked to the right. Clone type N1/2/3 indicates that the cell TCR

sequences were observed 1/2/3 times across the CD4+ T cells, whereas N4 indicates that it was observed > = 4 times, and NA indicates that no dominant TCR

alpha/beta was observed in the cell.

(B) t-SNE projection of T cells, with each cell colored based on the relative normalized expression of CD4, FOXP3, GZMA and CTLA4.

(C) Violin plots showing expression comparison of selected Treg markers in this dataset. The expression is measured as the log2(TPM+1).
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Figure S5. The Expression Pattern of Exhaustion-RelatedGenes in Different Tumors andClinical Implications ofPHLDA1,SNAP47 andCCR8

Expression in Liver Cancer, Related to Figures 3 and 4

(A) The expression pattern of exhaustion-related genes and cell-type marker genes in different tumors. The bar chart on the right shows the relative expression

(log2FC) of the overall exhaustion-related genes between exhausted and non-exhausted TTCs in each tumor. Error bars represent ± SEM.

(B) Violin plots comparing the expression distribution of PHLDA1, SNAP47 and CCR8 across 11 T cell clusters.

(C) Disease-free-survival (DFS) curve comparing the high and low expression of PHLDA1, SNAP47 and CCR8 based on the TCGA HCC cohort.

(D) FACS analyses showing the absence of LAYN expression in multiple resting immune cell populations isolated from human PBMCs. B cells: CD3�CD20+;
Monocyte/DCs: CD3�CD20�CD14+; Non-Treg CD4 T cells: CD3+CD4+CD25�; Tregs: CD3+CD4+CD25+CD127�; CD8 T cells: CD3+CD8+CD20�. Representative
data from three independent experiments with 6 different donors are shown.

(E) Human PBMCs were similarly stimulated as in Figure 4C for 2 days. Gated on CD8 T cells, LAYN, PD-1 and LAG-3 expressions were determined by FACS.

Representative data from three independent experiments with 6 different donors are shown.



Histogram for TCRA1 Chain

log2(TPM+1)

Fr
eq

ue
nc

y

0 2 4 6 8 10 12
0.0

0.1

0.2

0.3

0.4

1 0 2 2 7 2344

160

264
229

54
4

Histogram for TCRA2 Chain

log2(TPM+1)

Fr
eq

ue
nc

y

0 2 4 6 8 10 12
0.0

0.1

0.2

0.3

0.4

6475

161436
80

161183

115

38
8

Histogram for TCRB1 Chain

log2(TPM+1)

Fr
eq

ue
nc

y

0 2 4 6 8 10 12
0.0

0.1

0.2

0.3

0.4

1 0 4 2 6 620
45

152
195

159

53
8

Histogram for TCRB2 Chain

log2(TPM+1)

Fr
eq

ue
nc

y

0 2 4 6 8 10 12
0.0

0.1

0.2

0.3

0.4

139136
113

31212636
6455

18111

A B

TCRα Chain TCRβ Chain

Fr
eq

ue
nc

y

0.0

0.2

0.4

0.6

0.8

1.0

1461
1713

618

3028

531
233

UniqueTCR 
One productive TCR
Two productive TCR

C

0

4

8

12

16

20

24

28

0 4 8 12 16 20 24 28
Occurrence of TCR α chains

Proportion

0.600
0.100
0.050
0.010
0.005
0.001
0.0001

O
cc

ur
re

nc
e 

of
 T

C
R

 β
 c

ha
in

s

TCR

94% 100%
77% 86% 88%

3%
11%

10% 12%4% 12% 4% 0%100

80

60

40

20

0
P0407 P0205 P0508 P0322 P1116

n=1 n=2 n≥3

86% 90% 81% 90%

8% 7%
10%

10%6% 3% 9% 0%100

80

60

40

20

0

NA

P0407 P0205 P0508 P0322 P1116

100% 97% 100% 100% 100%

0% 3% 0% 0% 0%100

80

60

40

20

0P
er

ce
nt

ag
e 

of
 T

H
s

P0407 P0205 P0508 P0322 P1116

F

TCR

Peripheral Blood Normal Tumor

TTC NTC PTC TTR PTRH

I

D

E

P N T

P
er

ce
nt

ag
e 

of
 c

lo
na

l T
C

R
s

**
**

0

2

4

6

8

10

12

CD8 T cellsG

0.0

2.5

5.0

7.5

20
−1 5−

1 19 6−
1 28 9

6−
5

29
−1 27 2 30 18 3−

1
7−

9
6−

2
7−

2
12
−3 5−

4
4−

2
5−

6
11
−2 4−

1
6−

6
12
−4

24
−1 6−

4
5−

5
7−

3
7−

8 15 4−
3

10
−3

10
−2

11
−3

25
−1 7−

6 13 14
21
−1

10
−1 5−

8 1
11
−1

23
−1 7−

7
12
−5 5−

3 16 6−
9

TRBV

Fr
eq

ue
nc

y(
%

)

0

5

10

15

2−
7

2−
1

2−
3

1−
1

1−
2

2−
5

2−
2

1−
5

1−
4

2−
6

1−
6

1−
3

2−
4

TRBJ

Fr
eq

ue
nc

y(
%

)

0.0

2.5

5.0

7.5

10.0

1−
2

9−
2 17

13
−1 8−

3
29

_D
V

5
13
−2

26
−1 21 25 8−

6
12
−2

38
−2

_D
V

8
8−

4
12
−1 19

12
−3

14
_D

V
4 3 5 27 8−
1

23
_D

V
6 2 35 6

8−
2 4 20 1−
1 41 22 24 16 10 39

38
−1

36
_D

V
7

26
−2 30 34 40Fr

eq
ue

nc
y(

%
) TRAV

0

2

4

6

33 49 45 20 37 31 34 40 42 26 39 52 54 53 48 57 24 10 23 43 22 9 30 32 28 29 13 44 47 5 36 8 21 4 6 11 58 15 12 27 17 41 50 3 18 56 7 46 59 14 25

Fr
eq

ue
nc

y(
%

) TRAJ

Figure S6. The Profile of TCR Usage in HCC-Related T Cells, Related to Figure 5

(A) The distribution of abundance of TCR a- or b-chain expressed in single T cells. The gray lines represent the fitting values.

(B) Bar plots showing the number of cells expressing unique or dual TCR alleles of a- and b-chains.

(C) The correlation between the degree of recurrent usage of various TCR a chains with that of b-chains among T cells. Each dot represents a group of TCR alpha/

beta allele expressed in a given number of cells. Dot size represents the proportion of such group in all TCR chains detected.

(D) Bar plots show usage of expressed V- and J- alleles of TCR beta chain in all T cells.

(E) Bar plots show usage of expressed V- and J- alleles of TCR alpha chain in all T cells.

(F) TCR distribution of CD8+ T cells from different locations in patient P1116. Each column represents an individual cell, and each row represents a distinct TCR

type. Most cells have unique TCR sequences, but some cells showed identical TCRs (multiple cells in one row, marked with black color).

(G) The proportions of clonal TCRs of CD8+ T cells in different locations and patients. **p < 0.01, Student’s t test. P: peripheral blood; N: adjacent normal tissue;

T: tumor tissue. Error bars represent ± SEM.

(H) TCR distribution in Tregs from different tissues in patient P0322.

(legend continued on next page)



(I) Bar graphs showing the fractions of unique and non-unique TCRs expression in T helper cells across peripheral blood, normal liver tissues and tumor

tissues. Unique TCRs (n = 1), duplicated TCRs (n = 2) and the clonal TCRs (shared by at least 3 cells in a given cell population, n R 3) are labeled with

different colors. Pie charts above each bar illustrate the composition of every individual TCR. NA indicates that no such cell type was analyzed for the given

patient.



Figure S7. Additional Data Visualization of Single-Cell Expression Patterns, Related to Figure 6

(A) The trajectory analyses of CD8+ and CD4+ T cells by other trajectory inference methods EMBEDDR, SCORPIUS and TSCAN, with the same datasets and

dispersed gene set as those used inMonocle 2.0. Each dot corresponds to a single cell, and each color represents a T cell cluster. The black dotted lines show the

state transitional trajectories.

(B) We developed a web-based tool for interactive online data analysis, visualization, and downloading (http://hcc.cancer-pku.cn) for user-inputted single or

multiple genes, based on the underlying HCC infiltrating T cell data.

http://hcc.cancer-pku.cn
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