您的位置:首页 > 中心动态> 正文

Nucleic Acids Research | 北京大学高歌团队开发长非编码RNA全面注释平台AnnoLnc2

时间:2020/05/17   放大字体 放小字体 打印

长非编码RNA(Long noncoding RNAs,lncRNA)是一类新型调控分子,近期研究发现其在从胚胎发育到肿瘤发生等多种生理病理过程中发挥核心调控作用[1–5]。因此,随着越来越多的长非编码RNA被鉴定[6, 7],一批计算工具应运而生,为生物学家预测lncRNA的GO功能和调控网络[8]、亚细胞定位[9,10],乃至lncRNA-RNA[11]、lncRNA-蛋白[12]相互作用等提供了重要的工具。然而,这些工具仅支持从单一角度对长非编码RNA进行注释,难以涵盖lncRNA的功能全谱。
2016年,北京大学高歌课题组开发了长非编码RNA在线注释平台AnnoLnc[13],基于700多套高通量数据和先进的计算流程实现了对任意人类长非编码RNA 从序列结构到进化模式的全面注释。作为国际首个长非编码RNA在线注释平台,AnnoLnc自2016年11月正式上线以来已成为相关领域的主流工具,支撑了来自全球5万余用户提交的近7千万条序列分析,并获邀为SpringNature Methods in Molecular Biology系列丛书撰写专题介绍章节。
日前,高歌课题组在此基础上全面更新升级了AnnoLnc平台。新版本AnnoLnc2整合了十个注释模块(图1),注释内容涵盖了序列和结构、表达和调控、功能和相互作用、以及演化和遗传关联,为研究长非编码RNA的功能及其作用机制提供了高效、全面的分析平台,并为后续的生物学研究提供了重要的线索。例如,演化模块的注释结果可以揭示长非编码RNA是否具有保守的功能[14];亚细胞定位模块的注释结果可以揭示它们在何处发挥功能[15];功能富集模块的注释结果可以揭示它们发挥怎样的功能[16];miRNA调控和蛋白相互作用模块的注释结果可以揭示潜在的功能机制[17, 18]等。

图1. AnnoLnc2框架

AnnoLnc2网站操作便捷。用户仅需上传或者输入待分析的序列,选择相应物种,即可进行一键式分析(图2A)。每条序列的注释结果均有一个对应的网页界面,各模块的注释结果以交互式的图表的形式展示,以便用户检索感兴趣的条目。用户可批量下载所有的注释结果(图2B)以用于后续研究。与AnnoLnc1相比,AnnoLnc2首次对小鼠长非编码RNA提供了全面支持。

图2. AnnoLnc2 网页界面。用户可通过一个三步骤的操作运行AnnoLnc2(A),并查看详细的注释结果,以及批量下载所有的注释结果(B)

为了满足批量分析的需求,AnnoLnc2还为用户提供了可进行大规模线下分析的单机版本(下载链接:http://annolnc.gao-lab.org/download.php)。该单机版不仅包含了在线版本的全部功能,还支持自定义模块和自定义注释数据,用户可以基于自产数据(如RNA-seq数据)指定感兴趣的模块进行批量分析。
该研究于2020年5月14日以“AnnoLnc2: the one-stop portal to systematically annotate novel lncRNAs for human and mouse”为题在线发表于Nucleic Acids Research。PTN项目博士生柯岚、杨德昌为共同第一作者北京大学生物医学前沿创新中心 (BIOPIC)/北京未来基因诊断高精尖创新中心(ICG)、生物信息中心(CBI)暨蛋白质与植物基因研究国家重点实验室高歌研究员为通讯作者,王宇、丁阳等合作者在平台构建和文章写作方面作出贡献。该研究得到国家重点研发计划, ICG和蛋白质与植物基因研究国家重点实验室的支持和资助。

AnnoLnc2网址:http://annolnc.gao-lab.org/

原文链接:https://doi.org/10.1093/nar/gkaa368

参考文献:

1. Batista,P.J. and Chang,H.Y. (2013) Long noncoding RNAs: Cellular address codes in development and disease. Cell, 152, 1298–1307.

2. Wapinski,O. and Chang,H.Y. (2011) Long noncoding RNAs and human disease. Trends Cell Biol., 21, 354–361.

3. Faghihi,M.A., Modarresi,F., Khalil,A.M., Wood,D.E., Sahagan,B.G., Morgan,T.E., Finch,C.E., St. Laurent,G., Kenny,P.J. and Wahlestedt,C. (2008) Expression of a noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of β-secretase. Nat. Med., 14, 723–730.

4. Mourtada-Maarabouni,M., Pickard,M.R., Hedge,V.L., Farzaneh,F. and Williams,G.T. (2009) GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene, 28, 195–208.

5. Gupta,R.A., Shah,N., Wang,K.C., Kim,J., Horlings,H.M., Wong,D.J., Tsai,M.-C., Hung,T., Argani,P., Rinn,J.L., et al. (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature, 464, 1071–1076.

6. Frankish,A., Diekhans,M., Ferreira,A.M., Johnson,R., Jungreis,I., Loveland,J., Mudge,J.M., Sisu,C., Wright,J., Armstrong,J., et al. (2019) GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res., 47, D766–D773.

7. Jiang,S., Cheng,S.-J., Ren,L.-C., Wang,Q., Kang,Y.-J., Ding,Y., Hou,M., Yang,X.-X., Lin,Y., Liang,N., et al. (2019) An expanded landscape of human long noncoding RNA. Nucleic Acids Res., 47, 7842–7856.

8. Zhou,J., Huang,Y., Ding,Y., Yuan,J., Wang,H. and Sun,H. (2018) lncFunTK: a toolkit for functional annotation of long noncoding RNAs. Bioinformatics, 34, 3415–3416.

9. Cao,Z., Pan,X., Yang,Y., Huang,Y. and Shen,H.-B. (2018) The lncLocator: a subcellular localization predictor for long non-coding RNAs based on a stacked ensemble classifier. Bioinformatics, 34, 2185–2194.

10. Su,Z.-D., Huang,Y., Zhang,Z.-Y., Zhao,Y.-W., Wang,D., Chen,W., Chou,K.-C. and Lin,H. (2018) iLoc-lncRNA: predict the subcellular location of lncRNAs by incorporating octamer composition into general PseKNC. Bioinformatics, 34, 4196–4204.

11. Li,J., Ma,W., Zeng,P., Wang,J., Geng,B., Yang,J. and Cui,Q. (2015) LncTar: a tool for predicting the RNA targets of long noncoding RNAs. Brief. Bioinform., 16, 806–12.

12. Zhang,W., Yue,X., Tang,G., Wu,W., Huang,F. and Zhang,X. (2018) SFPEL-LPI: Sequence-based feature projection ensemble learning for predicting LncRNA-protein interactions. PLOS Comput. Biol., 14, e1006616.

13. Hou,M., Tang,X., Tian,F., Shi,F., Liu,F. and Gao,G. (2016) AnnoLnc: a web server for systematically annotating novel human lncRNAs. BMC Genomics, 17, 931.

14. Ponjavic,J., Ponting,C.P. and Lunter,G. (2007) Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs. Genome Res., 17, 556–65.

15. Zhang,K., Shi,Z.M., Chang,Y.N., Hu,Z.M., Qi,H.X. and Hong,W. (2014) The ways of action of long non-coding RNAs in cytoplasm and nucleus. Gene, 547, 1–9.

16. Guttman,M., Amit,I., Garber,M., French,C., Lin,M.F., Feldser,D., Huarte,M., Zuk,O., Carey,B.W., Cassady,J.P., et al. (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature, 458, 223–7.

17. Yoon,J.-H., Abdelmohsen,K. and Gorospe,M. (2014) Functional interactions among microRNAs and long noncoding RNAs. Semin. Cell Dev. Biol., 34, 9–14.

18. Castello,A., Fischer,B., Eichelbaum,K., Horos,R., Beckmann,B.M., Strein,C., Davey,N.E., Humphreys,D.T., Preiss,T., Steinmetz,L.M., et al. (2012) Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell, 149, 1393–406.